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Correspondence 

A Further  Analysis  for  the  Minimum-Variance 
Deconvolution  Filter  Performance 

CHONG-YUNG CHI 

Abstract-Chi and Mendel [I], [9] analyzed  the  performance of the 
minimum-variance  deconvolution (MVD). In this correspondence, a 
further analysis of the performance of the MVD filter  is  presented. We 
show that  the MVD filter performs like an inverse  filter and a whit- 
ening  filter as SNR + 00, and like a matched  filter as SNR + 0. The 
estimation error e ( k )  of the MVD filter  is  colored  noise, but it becomes 
white  when SNR + 0. This  analysis  also  connects  the error power  spec- 
tral density of the MVD filter  with the spectrum of the  causal  predic- 
tion error filter. 

I. INTRODUCTION 

Mendel [ 2 ] ,  [3], [6] developed a minimum-variance deconvo- 
lution  (MVD) filter for  the  following  linear  time-invariant  convo- 
lution model: 

z ( k )  = p ( k )  * v(k) + n ( k )  

k 

= c v ( i )  p ( k  - i )  + n ( k ) .  (1) 
i = O  

In this model, v(k), k = 0, 1, 2 ,  . * * , is  the  impulse response 
sequence of the  signal  distorting  system (e.g., impulse  response of 
communication  channel,  seismic  source  wavelet), p ( k )  is the  de- 
sired signal  sequence  (e.g.,  message, reflectivity sequence),  and 
n ( k )  is the measurement  noise, which accounts  for physical effects 
not explained by the  noise-free signal p ( k )  * v ( k )  as well as  sen- 
sor noise. They  assume that p ( k )  and n ( k )  are white and  zero 
mean, with variances 

and 

E [ n 2 ( k ) ]  = R ,  (3)  

respectively. 
The fixed-interval MVD filter estimates  the input signal p ( k )  

from a set of measurements z ( k ) ,  k = 1, 2 ,  . . . , N where N is 
the total number of measurements. A well-known fact is that  the 
linear  minimum-variance  estimate fi  is  given by  [4]-[6] 

p = u2v,Q-lz (4) 
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and Q is the  covariance  matrix 

Q = E [ z z ’ ]  = u:W’  + IU (7) 

with I being  an identity matrix.  The  covariance matrix of estima- 
tion  error e ( k ) ,  defined by 

e ( k )  = P ( k )  - $ ( k )  ( 8 )  

is 

E [ e e ’ ]  = u:Z - u:V’Q-’V. (9)  

Chi and  Mendel  derived the frequency response yMV( w) of the 
steady-state MVD filter to  analyze  its  performance.  From  the  de- 
rived VMv (w ), they found  that  the steady-state MVD filter is equiv- 
alent  to Berkhout’s two-sided least-squares filter [SI. They quan- 
titatively showed  the  undershoot  and  zero-phase properties of the 
MVD filter output  based  on VMv ( a ) .  They  also  showed  that  the 
error variance E [  e (k)’] depends on  the signal-to-noise ratio (SNR) 
defined by 

-2 m 

SNR = v2(k)  
R k = O  

and only slightly on data  length.  In this correspondence,  we present 
a further  analysis of the  behavior of the  MVD filter.  In Section 11, 
we  derive  the  power  spectral density Q, (w ) of e ( k ) .  In Section 111, 
we present some properties about  the  behavior of the MVD filter 
based on  the  theoretical results obtained  in  Section 11. We draw 
conclusions in Section  IV. 

11: POWER SPECTRAL DENSITY OF THE ESTIMATION ERROR 

We  begin  with  the  derivation of the  autocorrelation  function of 
the  output of the  MVD filter.  Let 

c jp(k .  k + I )  = E[$( /?)  $ ( k  + I ) ]  = u;v;Q-ivk+l  (11) 

where vk is  the kth column of the matrix V.  Note, from (1 1), that 
dp ( k ,  k + 1 ) depends  not only on 1 but  also  on k .  When  the  MVD 
filter reaches the  steady  state,  it  becomes a linear  time-invariant 
filter with the  frequency response VMv ( w ) being [ 11, [9] 
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where V ( w )  is  the  Fourier  transform  of v(k) and V* ( w )  is  the 
complex  conjugate of V (  w ) .  Therefore,  the  output p ( k )  of  the 
MVD  filter  becomes a  wide  sense  stationary  random  process  when 
the  MVD  filter  reaches  the  steady  state.  In  the  steady  state, 

whose  frequency  response  is 

The  autocorrelation  function +$( k ,  k + E ) depends only on E when 
the  MVD  filter  reaches  the  steady  state.  In  other  words, 

From (9) and  (1 1), we see  that  the  correlation  function  of  the 
estimation  error e ( k  ) is 

+ , ( E )  = U : ~ ( E )  - + $ ( E )  (18) 
when  the  MVD  filter is in  the  steady  state.  Therefore,  from (17) 
and (18), we  have 

which  implies  that e ( k )  is  colored  noise.  In  the  next  section, we 
present  the  behavior  of  the  MVD  filter based on  the  above  results. 

111. BEHAVIOR OF THE MVD  FILTER 

We now present  the  properties  from ‘Pe ( w  ) and VoUt( w )  obtained 

1) 
in Section I1 in the  following: 

as R -+ 00 or u: -+ 0 (i.e., SNR -+ 0). 

was  mentioned  in [l] without  proof. 
3) The  error  variance  is u2 = + , ( O )  = u:( 1 - uout(0)), which 

4) Because 

[see (17)], the  autocorrelation  function of the  output  of  the  MVD 
filter  has  the  same  waveshape as its  output  wavelet vOut( k ) .  

5) + , ( k )  is  proportional  to  the  autocorrelation  function r#+f(k) 
of the  impulse  response of the  prediction  error  filter [ 101 because 

where 7 is  the  error  variance of the  prediction  error  filter. 
It is well known  that  the  prediction  error  filter  is a  causal  whit- 

ening  filter  no  matter  what  the SNR is.  Unlike  the  prediction  error 
filter,  the MVD filter  performs  differently.  We  make  the  following 
conclusions  about  the  behavior of the  MVD  filter. 

The  property 1) implies  that  a)  the  MVD  filter  performs  like  an 
inverse  filter  and  b)  the  estimation  error e ( k )  is  colored  noise  when 
SNR -+ 00. 

The  properties 1) and 4) imply  that the  MVD  filter  also  performs 
like a  whitening  filter  when  SNR -+ 03 because  the  output of the 
MVD  filter  approaches  white  noise. 

The  property  2)  implies  that  the  MVD  filter  performs  like  a 
matched  filter  and e ( k )  is  white  noise  when  SNR --t 0.  

The  property 5) implies  that  the  impulse  response of the  predic- 
tion  error  filter  can  be  obtained by solving  a  set of normal  equations 
using only the  measurement z ( k ) .  On  the  other  hand, R, u:, and 
V ( k )  must  be  given  ahead of time  when the  MVD  filter  is  used. 
From  the  impulse  response of the  prediction  error  filter,  one  can 
predict  the  shape of the  error  power  spectral  density  of  the  MVD 
filter,  from  which  one may further  infer  some  information  about 
SNR.  For  example, if the  obtained ‘PPef( w )  for  given z ( k )  is very 
flat (a constant),  then +,( w )  is  also  flat.  From  the property. 2), we 
predict  that  the  SNR  is  small. 

IV.  CONCLUSIONS 

In this  correspondence,  we  began with the  deviation of the  power 
spectral  density of the  output of the  steady-state  MVD  filter.  Based 
on  the  derived  results,  we  presented  some  properties  about  the  be- 
havior of the  MVD  filter.  The  MVD  filter  performs  like  an  inverse 
filter  and a whitening filter  as SNR -+ 0 3 ,  It  performs  like  a  matched 
filter  as SNR -+ 0. The  estimation  error of the  MVD  filter is col- 
ored noise,  but  it  becomes  white  when  SNR -+ 0. The  error  power 
spectral  density of the  MVD  filter  also  provides  a  connection with 
the  spectrum of the  causal  prediction  error  filter.  From  this  con- 
nection,  some  information  about  SNR may be  obtained  from  the 
measurement z ( k ) .  
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